ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Auteurs : soumettez
votre article en ligne
Autres revues >>

Traitement du Signal

0765-0019
Signal, Image, Parole
 

 ARTICLE VOL 30/6 - 2013  - pp.309-342  - doi:10.3166/ts.30.309-342
TITRE
Algorithmes de reconnaissance NCTR et parallélisation sur GPU

TITLE
NTCR algorithms and GPU parallelization

RÉSUMÉ

Dans cet article, nous nous sommes intéressés aux problèmes de reconnaissance non-coopérative de cibles (NCTR) en tant que problème de classification supervisée. Après une présentation du système d’acquisition des profils distance radar et du problème de reconnaissance, suivie d’une étude statistique des données, nous proposons d’utiliser un algorithme des K plus proches voisins (KPPV) dont les performances sont dét aillées en fonction du nombre de voisins K, du type de distance utilisée et de la nature des données utilisées (débruitées ou non). Dans un second temps, cet algorithme a été parallélisé sur un processeur many-cœurs (GPU : Graphics Processing Unit). Les opérations arithmétiques et le modèle d’accès mémoire ont été étudiés pour obtenir la meilleure parallélisation des calculs. Enfin, nous terminons par une discussion autour des perspectives envisageables pour la méthode proposée, notamment en s’intéressant à d’autres espaces de représentation ou à d’autres méthodes de classification.



ABSTRACT

In this paper, first, we present the problem of Non Cooperative Target Recognition (NCTR) as a supervised classification problem. After a presentation on the radar acquisition system of range profiles and the problem of recognition, followed by a statistical study of data, we use a classical classification method of K Nearest Neighbors (KNN) to do this classification. We explore and compare the performances of this algorithm based on the choice of the distances, the choice of K and the nature of used data (denoised or not). KNN algorithm has been executed initially on CPU with Matlab and then on GPU. Arithmetic operations and memory access pattern has been studied to get the best parallelization. Finally, we conclude with a discussion about possible perspectives for the proposed method especially by focusing on other representation spaces or other classification methods.



AUTEUR(S)
Thomas BOULAY, Nicolas GAC, Ali MOHAMMAD-DJAFARI, Julien LAGOUTTE

MOTS-CLÉS
NCTR, KPPV, GPU, HRD, radar, classification

KEYWORDS
NCTR, KNN, GPU, HRR, radar, classification

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (975 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier