ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Auteurs : soumettez
votre article en ligne
Autres revues >>

Traitement du Signal

0765-0019
Signal, Image, Parole
 

 ARTICLE VOL 29/1-2 - 2012  - pp.101-121  - doi:10.3166/ts.29.101-121
TITRE
Reconnaissance supervisée et non supervisée de lois à partir d’échantillons finis

TITLE
Supervised and unsupervised law recognition from finite samples

RÉSUMÉ

Dans cet article, nous abordons le problème de la reconnaissance de lois de probabilité à partir d’échantillons variant de 100 à 10 000 ou plus. Le contexte applicatif porte sur la modélisation de canaux radio-mobile en situation de visibilité ou de non-visibilité directe entre émetteur et récepteur. Ce problème est crucial pour améliorer les communications numériques. Dans la communauté des transmissions numériques, il est courant d’utiliser la distance de Kolmogorov-Smirnov. Plus rarement, une méthode à noyau est considérée avant le test comparatif. Nous proposons d’utiliser les critères d’information (IC), d’une part pour approcher les lois de probabilité par un histogramme, et d’autre part pour sélectionner le meilleur modèle de loi. Nous étudions les cas supervisé et non supervisé et comparons les méthodes dans ces situations réalistes. Les résultats montrent l’intérêt d’utiliser les méthodes exploitant les IC.



ABSTRACT

Dans cet article, nous abordons le problème de la reconnaissance de lois de probabilité à partir d’échantillons variant de 100 à 10 000 ou plus. Le contexte applicatif porte sur la modélisation de canaux radio-mobile en situation de visibilité ou de non-visibilité directe entre émetteur et récepteur. Ce problème est crucial pour améliorer les communications numériques. Dans la communauté des transmissions numériques, il est courant d’utiliser la distance de Kolmogorov-Smirnov. Plus rarement, une méthode à noyau est considérée avant le test comparatif. Nous proposons d’utiliser les critères d’information (IC), d’une part pour approcher les lois de probabilité par un histogramme, et d’autre part pour sélectionner le meilleur modèle de loi. Nous étudions les cas supervisé et non supervisé et comparons les méthodes dans cessituations réalistes. Les résultats montrent l’intérêt d’utiliser les méthodes exploitant les IC.



AUTEUR(S)
Olivier ALATA, Christian OLIVIER, Zhan JIN, Yannis POUSSET

MOTS-CLÉS
reconnaissance de lois, approches supervisée et non supervisée, critères d’information, estimateur de densité par noyau, communications numériques.

KEYWORDS
law recognition, supervised and unsupervised methods, information criteria, kernel density estimator, digital communications.

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (466 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier