ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Auteurs : soumettez
votre article en ligne
Autres revues >>

Traitement du Signal

0765-0019
Signal, Image, Parole
 

 ARTICLE VOL 27/4-5 - 2010  - pp.443-482  - doi:10.3166/ts.27.443-482
TITRE
Un arbre de Markov sélectif en fréquence pour la détection de signaux transitoires à faible rapport signal / bruit

TITLE
A Markov tree with frequency selectivity for the detection of weak transient signals

RÉSUMÉ

Nous nous intéressons dans cet article à l’extraction de comportements statistiques multirésolutions pour la caractérisation et la segmentation de signaux transitoires dans un contexte fortement bruité. Ces signaux de courte durée possèdent des composantes fréquentielles très localisées et fortement variables. Le choix du compromis temps/fréquence pour l’étude de ces signaux est donc crucial. Nous nous plaçons de ce fait dans le domaine transformé en paquets d’ondelettes, permettant une analyse fine des variations fréquentielles du signal. Nous proposons un modèle d’arbre de Markov original adapté à la décomposition en paquets d’ondelettes afin d’intégrer l’information multirésolution d’échelle en échelle dans un objectif de segmentation. Nous validons l’approche sur des signaux synthétiques, puis nous illustrons son intérêt applicatif dans un contexte biomédical liée à la détection de signaux transitoires dans les signaux pulmonaires.



ABSTRACT

We deal in this paper with the extraction of multiresolution statistical signatures for the characterization of transient signals in strongly noisy contexts. These short-time signals have sharp and highly variable frequency components. The Time-Frequency analysis window to adopt is then a major issue. Thus we have chosen the wavelet packet domain due to its natural ability to provide multiple time-frequency resolutions. We propose a new oriented Markov model dedicated to the wavelet packet transform, which offers sharp analysis of frequency variations in a signal, locally in time and at several resolutions. We show its efficiency on synthetic signals and we then illustrate its applicative relevance in a biomedical context related to the detection of transient signals in pulmonary sounds.



AUTEUR(S)
Steven LE CAM, Christophe COLLET, Fabien SALZENSTEIN

MOTS-CLÉS
Mod�les de Markov Cach�s, Extraction de Signature, D�tection de Signaux Transitoires, M�langes de Gaussienne G�n�ralis�e, ICE.

KEYWORDS
Hidden Markov Model, Signatures Extraction, Transient Signals Detection, Generalized Gaussian Mixtures, ICE.

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (2,25 Mo)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier