ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique
Auteurs : soumettez
votre article en ligne
Autres revues >>

Traitement du Signal

0765-0019
Signal, Image, Parole
 

 ARTICLE VOL 27/1 - 2010  - pp.109-119  - doi:10.3166/ts.27.109-119
TITRE
Des moindres carrés aux moindres déviations

TITLE
From least squares to least deviations

RÉSUMÉ

La régression linéaire est un domaine important en pratique qui est, en général, associée aux moindres carrés. Mais on sait depuis longtemps que si les erreurs ne sont pas vraiment gaussiennes et peuvent inclure des valeurs aberrantes il est préférable d’utiliser la norme ℓ1 et de passer aux moindres déviations. Une version intermédiaire consiste à minimiser la norme ℓ1 pour les résidus supérieurs à un seuil h et la norme ℓ2 pour les autres, on retrouve alors la fonction de pénalisation de Huber qui est optimale dans un certain sens. On propose un algorithme qui génère la suite de ces optimums. Le coût considéré dépend d’un paramètre h. L’algorithme démarre en h infini avec l’optimum des moindres carrés qui est simple à obtenir, on propage la solution pour h décroissant, et en h nul, on a l’optimum des moindres déviations.



ABSTRACT

Linear regression is mostly dominated by least squares which corresponds to Gaussian noise. But it is known for a long time that if outliers may be present in the measurements, robust regression techniques such as the least absolute deviation method, are preferable. One can also consider an intermediate cost function where residues larger than a threshold h are weighted by the ℓ1-norm and the others by the ℓ2-norm. This leads to the Huber penalization that is optimal for a certain contaminated Gaussian distribution. No closed-form solution exist for these cost function and we propose an algorithm which, initialized by the least squares estimate that is optimal for h infinite, builds the sequence of estimates associated with decreasing h, a zero h corresponding the least absolute deviation estimate.



AUTEUR(S)
Jean-Jacques FUCHS

Reçu le 1 octobre 2009.    Accepté le 15 mai 2010.

MOTS-CLÉS
régression linéaire, moindres carrés, moindres déviations, estimation robuste.

KEYWORDS
linear regression, least squares, least deviations, robust estimation

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (101 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
made by WAW Lavoisier